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Vortex dynamics and entropic forces in antiferromagnets and antiferromagnetic Potts models
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It is well known in models with an interface representation, such as the dimer model, the triangular Ising
antiferromagnet, the six-vertex ice model, and the three-state antiferromagnetic Potts model on the square
lattice, that topological defects of opposite charge are attracted with an entropically-driven Coulomb force. We
examine the Potts model in detail, show explicitly how this force is felt through local fields, and calculate the
defects’ mobility. We then take two approaches to measuring this force numerically. First, we quench a random
initial state to zero temperature and measure the density of def@gtas a function of time. While this gives
some evidence for a local force, we compare it with a free diffusion experiment, and show that the asymptotic
decay ofp(t) depends on the initial distribution of defects rather than the forces between them. Second, we set
up initial conditions with a single pair of vortices, and measure the force between them as a function of
distance. This gives reasonable agreement with theory, although finite-size effects and a lack of ergodicity play
a significant role[S1063-651X%99)15611-3

PACS numbgs): 05.50:+q, 75.10.Hk, 47.32.Cc, 67.40.Fd

[. INTRODUCTION just as for dislocations in solid$]. Integrating this over all
space for a pair of defects with Burger vect&snd —B a
A number of models in statistical physics admit an inter-distancer apart and differentiating with respect tajives a
face representation, such as dimer mod#|g], the triangu- Coulomb-like attractive forcg7]
lar Ising antiferromagndi3,4], the six-vertex ice moddb],

and the three-state Potts antiferromagnet on the square lat- G KB?

tice. The long-wavelength behavior of the system is then === (©)
governed by a Gaussian model, with a free energy of the

form

If we are in a viscous regime whefeis opposed by fric-
1 tional forces, we expedt to be proportional to the particles’
G=§KJ |Vh|2dx dy. (1)  velocity,
Here h is the height of the interface anld is a stiffness V=TE=— FK82: ﬁ @)
constant. Thus, there is a free energy cost related to the gra- ar r’
dient of the interface.
Topological defects in these models become screw dislowherel is the mobility.
cations in this representation, where the topological charge is Since the energy of a pair of defects is not related to their
equal to the Burgers vect@, i.e., the total change in height distance, this force is entirely entropic; that is, two defects
Ah integrated around the defect. Such a defect has a fieldre attracted because there are more ways to arrange the

around it surrounding lattice when they are close together. This is ex-
planation enough, but how defects feel this in their local
Vh|= i dynamics is somewhat mysterious. In addition, to our knowl-

2@ edge this force has not been measured directly.

We start by reviewing the three-state Potts model on the
so the free energy of a defect integrated from a short-distancsyuare lattice and its interface representation. We define a
cutoff ro (roughly the lattice spacingo an interdefect dis- |ocal field and show that the motion of defects under single
tancer is spin-flip dynamics is in fact correlated with this field, thus
justifying Eq. (4) from a microscopic point of view. We also

G= K—Bz(logr—logr ) @) calculate the mobilityl™ of the defects.

4 0 To confirm the existence of a Coulomb force, we do two
kinds of numerical experiments. First, we quench a random
initial state to zero temperature and measure the density of

*Electronic addresgmoore,shalizi@santafe.edu defects as a function of time. We find logarithmic corrections
"Electronic address: tfemn@fy.chalmers.se to pct ! like those seen in thXY model[8]. However, a
*Electronic address: nelson@media.mit.edu free diffusion experiment suggests that this occurs whenever
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FIG. 2. Local magnetization around a pair of vortices in the

a local conservation law is used to determine the defects=3 Potts antiferromagnet. This picture was obtained by relaxing a
initial positions, whether or not there are forces betweerB2x32 lattice until only two defects remained, and then holding
them. them fixed for 18 updates per site while we averaged the magne-

Therefore, we also attempt to measure the force directlyization at each site.
by placing a pair of defects apart, allowing the lattice
around them to equilibrate, and measuring how they woulthandedness as they diffuse, and two defects of opposite
move toward or away from each other if we allowed them to.handedness can annihilate when they meet. There are also
We obtain good agreement with a force of the foftr)  chargeless excitations, where sites on either side of the ends
=—A/(r +ry), although finite-size effects and a partial lack of the frustrated bond have the same color. These can be
of ergodicity atT=0 affect our results. Using Park and Wi- annealed away without interacting with other defects, so they
dom’s calculation of the stiffness of the equivalent heightdisappear exponentially quickly in a quench.
model[9] and our calculation of the mobility, we predict Kolafa defines the charge within a region as a sum around
that A for the Potts antiferromagnet should be 3/4. This is ina counterclockwise perimeter,
reasonable agreement with our results.

1
Il. THREE-STATE POTTS ANTIFERROMAGNET Q= 5 2 m(si+1—S), (7)

The g-state antiferromagnetic Potts model is a generaliza-
tion of the Ising antiferromagnet,
wherem(k)=0, +1 or—1, andm(k)=k(mod 3). To trans-
Uzz P ) late this into an interface model, define a height function
=~ =) on the lattice so thah;=s;(mod 3), and furthermoré;
where each site has a stap={1,2,...q} and § is the
Kronecker § function. The states are often thought of as
colors, so that the ground state consists of a coloring where e
no two neighbors have the same color. Witgn3, this can
be thought of as a discretization of the antiferromagneic
model,

U=2 cog6,—6)), (6)

where each site has a unit spin pointing in some direafion
If the 6, are restricted to three directionstZ apart, then
Egs.(5) and(6) are equal up to an affine transformation since
cos(@— ;) depends only on whethe and ¢; are the same
or different.

We will focus on this three-state model on the square
lattice. Nightingale and SchidkL.O] showed that it is critical
at T=0. Baxter[11,12 showed that this is its only phase
transition, and solved it there as a hard-squares model. Fa ,

recent Monte Carlo studies using the Wang-Swendsen: 075 ¢
Kotecky cluster algorithn{13], see, e.g., Ferreira and Sokal .
[14].

Kolafa [15] pointed out that this model supports vortices,  FIG. 3. Scatter plot of the time-averaged local magnetization in
as shown in Fig. 1. These change color but preserve thekig. 2.
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S WY defect corresponds to a monopole, an undefined edge with six ar-
\{:‘:{:::S:?‘:\ ‘\ \‘,‘,"‘{:@\g’:{{{: rows emerging from it.
As Fig. 5 shows, if we flip one site of a positive defect,

FIG. 4. Picture analogous to Fig. 2 for the triangular Ising anti-the displacement of its midpoint from that site is just one-
ferromagnet, produced in the same way on &33 rhombic lat-  half the field on the edge extending the frustrated bond.
tice. Since both sites are equally likely, the average movement of
the defect’'s midpoint is proportional ® averaged over the
two bonds extending from the defect,

—hj==*1 between neighboring sit¢sote we can add a mul-
tiple of 3 to h without changing the stateThen Eq.(7)

becomes 1

1 (Ax)=7 > E.
Q=5 2 Ah,
. _ _ If we define a discrete contour integral around a boundary
where the sum is around a counterclockwise perimeter. Th'%ith bondsb. we can rewrite Kolafa’s formula as
sum is simply the Burgers vect®, and is+6 for a single ’
defect. The factor of 1/6 then gives a cha@ef =1. 1
Equivalently, we can define a complex local magnetiza- Q=—~ E ExDb,
tion &=(—1)Pe®™'si"3 where the three colors correspond to 675
the cube roots of unity, and<(1)P gives a sign of-1 and
+1 on odd and even lattice sites, respectivElg]. This 5o if E is sufficiently uncorrelated around a large perimeter,
makes regions with antiferromagnetic order, say with color Jye have
on one sublattice and colors 2 and 3 on the other, relatively

uniform. ThenQ is the winding number o&; around the 6Q B
origin, E=— = _—
27r  2r
1 dé
T 2mi ) £ If we make a local mean-field approximation in which the

is uncorrelated between the two dashed edges, so that

In Figs. 2 and 3, we show the time averagefdior a con-  (1/5ySE—E then defects of charg® and Q' are affected
figuration with two defects. We can clearly see how eacl‘by a 1f force

vortex produces a field around it which falls off with dis-
tance. In Fig. 4 we show a similar picture for the triangular
Ising antiferromagnet, with a local magnetization defined as (AX)= )
in [17]. 27t

We will now explore how defects could feel a Coulomb
force under single spin-flip dynamics, where at each step wéhe constant here is only approximate, since the two dashed
choose a random site in the lattice and change its color uredges are not uncorrelated. Similar arguments can be made
less this would increase the energy. If we define a field for the triangular antiferromagnet, the six-vertex ice model,
perpendicular to each bond so that the higher color in th@nd a related Villain model1g].
cyclic ordering 3>2>1>3 is on its left, therE will tend to Lenard[19] pointed out that orienting the bonds of the

point towards negativéclockwise defects and away from dual lattice according t& maps theg=3 square Potts anti-
positive (counterclockwisgones. Note thaE is simply Vh ferromagnet onto the six-vertex ice model, giving both mod-
rotated by 90° els the ground-state entropy &fogs per site calculated by

Lieb [20]. When defects are present, this mapping breaks
| down as shown in Fig. 6. The frustrated bond has three out-
131 121 213 going or incoming arrows at each end. Thus defects act like
203 2 W33 12 monopoles composed of a bound pair of vertices with an

312 312 ! unoriented bond between them. Nig al. [21] defined a
27-vertex model that includes bonds and vertices of this type
FIG. 5. If we define a field on each bond so that the higher and studied its scaling properties. We note that the Potts
color in the cyclic ordering is on its left, the movement of a positive model can also be thought of as a fully packed loop model,

defect is proportional t& averaged over the two dashed edges. in which every vertex is covered by exactly one |d@@].
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[ll. ENTROPIC FORCES ON A DISCRETE LATTICE ferromagnetic Ising model at a nonzero effective tempera-
We saw in the Introduction how the interface model, andiﬁ;egfﬁgfilﬂgfaﬁgogﬁ'e%Znsi;ueblitﬂcfdg Eh-lgha er: aI; St\l:/%s on
the Gaussian approximation to it we assume holds in the5hoices of color if its four neighbors have the same color, or

long-wavelength limit, give us an entropy-driven free energy”~ . i R i
gradientAG proportional to log and therefore a Coulomb equwalently if the fieldE points clockwise or co_unterclock_—
force between defects. However, it is instructive to look di-Wise around all four bonds, and only one choice otherwise.

rectly at the Potts model and examine how such an entropRecall that the field determines whether the color changes
gradient could arise on a discrete lattice. The interface moddly +1 or —1 between neighbors. If we define the probabil-
is not the only way to derive this; for the dimer model on theity of the color increasing in the andy directions ag, and
square lattice, for instance, Fisher and Stephefi28hused  py, respectively, we have

Pfaffians and Toeplitz determinants to show that the number

of configurations with two “holes” a distance apart is re- px=(1-E)/2,
duced byAr~'2 so AG=(1/2)logr. loffe and Larkin[24]
pointed out that this leads to a Coulomb force. In addition, py=(1+Ey/2,

Zeng and Leath25] performed numerical calculations of the

cost of dislocation pairs in a randomly pinned fully packedwhereE, andE, are the components of the average field. If

loop model, and found a cost proportional to tog E is slowly varying, and if the colors of the four neighbors
One simple counting argument goes as follows. Supposere independent, which they are not, the probability of all

we are trying to extend a spin configuration outward from afour having the same color is

square region of the lattice by adding an additional laydr of

sites around its perimeter. For the Potts model, successive

sites have colors; differing by =1, and the sum in E(7) 2p(1=P)py(1=py) =

is the total displacement of a walk of lendthThe number of

1 , 1
§(1-ED(1-E)?~ Z(1-E?)

such walks is for small fieldsE<1. The average entropy per site is
' B In2 o In2 )
112-6Q)" =g ITE)msm g E

whereQ is the charge inside the perimeter. The lar@eis,  \yheres, is a(badly underestimatedjround state entropy of
the greater the constraint on the walks, and the lower they/g)In 2 per site. The effective free energy is then increased
entropy will be. If we ignore the interaction between succesy,

sive layers, which of course we cannot, then the entropy of

the set of states surrounding a cha@e(we take Boltz- In2
mann’s constant to be 1) is G=—-AS= ?J E2dx dy, (8)
r
Sq~|nH ( ! ):E In( I ) giving an energy density proportional to the square of the
i—o \1/2—6Q/ =0 \1/2—-6Q field, just as in electromagnetism. Since this field is simply
; | | Vh rotated by 90°, this again justifies the Gaussian model of
e . Eq. (2).
S ;%{m&m> th—BQ”
g IV. VISCOUS FORCES AND MOBILITY
”So—(GQ)ZEO T~S—A QInr To show how an entropy gradient can drive a first-order

force, suppose that we group the set of spin configurations

for some constand. We cut off our sum at some maximum With two defects into a set of macrosta®§), one for each
perimeter proportional to the interdefect distamceutside interdefect distance As the defects move towards and away

which the charge® is presumably canceled by defects of thefrom each other, we can describe the system as a biased
opposite type. random walk

While the assumption of independent layers is hugely
wrong (for instance, it gives a ground state entropy per site
of sp=5y/N=2) we find that the presence of a cha@e
reduces the entropy by an amountAS proportional to
Q?Inr. We can think of this as a contribution to an effectiv
free energy,

e23(r-D23(n=22(r+1)=- -

If we assume that this walk is a Markov process that has not
e et had time to hit the absorbing sta&f€0) where the de-
fects annihilate, and if during this transient all microstates
with two defects are equally likely, then the ratio of transi-
tion probabilities between neighboring macrostates must be

G=—AS=AQ?Inr ( _ _
the ratio of the number of microstates in them,

reproducing the form of Eq2).
As another approach, Koteck6] pointed out that the Pr—r+1) Q(r+1)
entropy of the Potts model can be related to the energy of a P(r+1—r) Q)
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where Q(r) is the number of microstates with defeats 8 tn(t) vs. log t
apart. The average motion is then
7
Ar)=P 1)—-P(r+1 o D=8
(AN =Pr=r+)=Pr+1=0=21s o ol
1 0Q(r) rE
Qo >
where ¢
I=(12[P(r—r+1)+P(r+1—r)] 9) T2 3 4 5
FIG. 7. Plot oftn(t) vs loggt for the triangular antiferromag-
can be thought of as a mobility, and net. The straight line suggests tha(t)« (logt)/t for larget, and
extends about a decade and a half. The data were taken by averag-
aS(r) 9G ing 100 trials of 18 updates per site on a 40861096 lattice, at
E= =— which time ~75 defects remained. The axis is in units of 16
or ar particles times time.
is the entropic force wher8=log (). wherep, is a core density an@ is a constant. Note that the

To calculatel’ for the Potts antiferromagnet, we need to left-hand Sldle of Eq(10) is constant for the mean-field be-
take into account the fact that a diffusing defect alternate$lavior pt™=. The leading behavior op as a function of
between horizontal and vertical bonds. If we assume for simtime is then

plicity that E is in the x direction, a vertical defect which
flips to a neighboring horizontal bond has an equal probabil- p
ity of flipping back to its original position or moving to the
vertical bond one site away. H_, andP_ are the probabili-
ties that it will move to the horizontal bond to its right and
left, respectively, after two time steps we havér —r+1)
=P_/2 andP(r+1—r)=P_/2. SinceP_ +P_=1, plug-
ging these into Eq9) and dividing by 2 sincé’ is inversely
proportional to time give$' =1/8.

logt
oC
t

log logt
t

modifying the asymptotic behavigr<t ~* with a logarithmic
correction. They confirm the existence of this correction
through numerical experiments.

We have performed similar experiments for the Potts
model, the triangular antiferromagnet, and a Villain model

o 5 related to the ice mod¢L8]. In each case, we quenched the
We can then calculate the coefficieht I'KB“/ 7 of Eq. system fromT = (a random initial stateto T=0, and mea-

(4) exactly. Park and Widorf8], using the exact solution of g,req the number of defectgt) as a function of time. In

the six-vertex ice model, showed that the free energy of atjg 7 e graphtn(t) against log for the triangular antifer-
interface of widthL across a height difference afh=+2 is romagnet, averaged over 100 runs of ifpdates per site
2m/6L, and Burton and I-;enle_{/Z?] point out that setting  gach on a 40964096 lattice. While logarithmic corrections
this equal to (L/ZK(Ah/L)"L givesK = /6. are difficult to establish numericallp(t) seems to behave as
Combining these values df and K with the BUrgers joq 1yt over one and a half decadestirin addition, in Fig.

vectorB=6 givesA=3/4. We will compare this to our nu- g \va se the same data to graph(dp/dt) 1 and fit it to
merical measurements below.

V. RELAXATION AND DIRECT MEASUREMENTS
OF THE FORCE

One way to detect a force between defects would be to
start the system in a random initial state and allow it to relax.
If defects of opposite charge are attracted, they would be -8
expected to meet and annihilate each other more quickly than
they would by random diffusion. Yurket al.[8] discuss the -10}
relaxation dynamics of th&Y model, in which vortices of
opposite type are attracted with a Coulomb force. Assuming

a viscous dynamice=I"F where the mobilityl" is inversely 2 2.25 2.5 2.75 3 3.25 3.5
proportional to log, they use simple scaling arguments t0 5 8. Plot ofp2(dp/dt)~? vs logyep for the triangular anti-
show that the defect density obeys ferromagnet, using the same data as in Fig. 7. The derivative at each
time t was defined by a linear fit to 101 data points centered around
1 dp C t. The fit is to the form in Eq(10). If the mean-field behaviop
SR Tk Few s (10 ot~! held, the graph would be a horizontal line. Thexis is in

p2 dt  log(p/pc)’ units of 16 particles times time.
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tn(t) vs. log t, L=4096 waa o

FIG. 9. Plot oftn(t) vs loggt in a continuous-time free diffu-
sion experiment, where the triangular antiferromagnet was used to
set up the initial distribution of defects. The straight line suggests
thatn(t)<(logt)/t, and extends three decades. The data were taken FIG. 10. Initial condition with two vertical defects an even dis-
by averaging 100 trials of 8 10> updates per site each on a 4096 tance away from each other. The six checkerboard phases cycle
X 4096 lattice until~100 defects remained. Tlyeaxis is in units of  around the defects, meeting at anglesmd8.

10’ particles times time.

e e e %
| BN NN NN

C Ylog(p/py), as per Eq(10). We obtain a good fit over a gm T
decade and half ip, with a core densityp.=0.02. Results dt
from the other two models are similar.

However, this turns out not to be a good test for a Cou-
lomb force. We have performed a continuous-time free dif-
fusion experiment, in which we use a random state of the pocg 2ot =2t @)
triangular antiferromagnet to set up the initial distribution of
defects. We then diffuse the defects with random walks]f a<1, thenp would decay faster tha *. Since we do not
moving them up, down, left, and right with equal probability, observe this, we claim that the “field lines” of this force
and annihilate pairs of opposite charge when they meespread out, and are not concentrated between defguts.
Thus, the defects have the same initial distribution and coranother paper, in progress, we argue that field lines do bunch
relations as in the antiferromagnet, but no forces betweeinto tubes when a ferromagnetic next-nearest-neighbor inter-
them. action is added.

Since these systems obey a Gauss-like law as inBg. In the case of thg)=3 square Potts antiferromagnet, we
the total charge in a region of sités a sum ofO(l) surface  have also measured the force between defects directly. In an
terms, rather an extensive sum ©{1?) random variables. effort to sample the set of configurations with two defects a
Thus the total charge fluctuates @$1'?) rather thanO(l),  particular distance away from each other, we set up an initial
and defects of opposite charge are well mixed with eaclgondition with two vertical defects of opposite type as in Fig.
other in the initial condition, giving a decay close to the 10, and then let the lattice evolve while keeping these defects
mean-field behaviop(t) >t~ 1. With uncorrelated initial con- fixed. We did this on lattice sizes of 32, 64, 128, and 256,
ditions, defects of like type clump into domains, giving a averaging over 10 updates per site in each case after an
t~ 12 decay[28,29. initial equilibration of 1§ updates per site. Letting the inter-

In Fig. 9 we graphtn(t) for a 4096x< 4096 lattice over a defect distance range up to 1/3 the lattice size, we perform a
continuous time of & 10° updates per site. The data appearsleast-squares fit to the form
to have the same asymptotic behavior of (g and fits of
p?(dp/dt) ! to logp are at least as convincing as for the (Ary=———
models we studied. In other words, the asymptotic behavior r+ro’
of p is more a consequence of the correlations in the defects’
initial positions than of the forces between them. This iswherer is a core radius. This fit seems to work fairly well.
presumably because a Tbrce causes the length scale of the = OUr values forA andr,, for various lattice sizes are
system to grow asymptotically @&’ no faster than diffu- A fo
sion vvpuld anyway. At shor_t times, hovyevegr,decreas'es 32 1.142 2573
faster in these models than in the free diffusion experimen

where¢ is the length scale of the system. ThentY/(1* @),
‘and the defect density is

indicating that attractive forces play a role early on when N 0.978 1.956
defects are relatively close together. 128 0.906 1.652
Even if the behavior op at long times does not confirm 256 0.869 1.494

the existence of a Coulomb force, we can argue that it doeshese show considerable finite-size effects. Since the model
show that the force between defects does not fall off morés critical at T=0, we assume thak converges to its exact
slowly than 1f. Generalizing the argument ¢8], if the  value as a power law in the lattice size. A least-squares fit to
force between two defects goes@as® for somea<1 and the formA(L)=A+CL™ ¢ gives an exponent ofr=1.137

the mobility is roughly constant, the typical velocity is and an extrapolated value 8f=0.843. This is much larger
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F(r) vs. r (log-log), L=256 were fully felt. It also means that the measured valuéAof
may depend on the topology of the initial condition; how-
ever, experiments on lattices of size 64 and 128 where all six
field lines connect the two defects directly give valuestof
and r differing from those above by less than 0.4%, so
topology may in fact not matter that much.

We also tried to use the Wang-Swendsen-Kotedkgter
algorithm[13] to sample the set of configurations with a pair
of defects at particular places. Unfortunately, while cluster-
flipping moves leave defects in the same place, they some-
times replace two defects of opposite charge with two
chargeless ones. Finding an algorithm more efficient than
single spin-flip dynamics to sample the set of two-defect

FIG. 11. Force between two defects as a function of their disconfigurations would seem to be an open question.
tancer, This data were obtained on a lattice of size 256 by starting

0.25 0.5 0.75 1 1.25 1.5 1.75

with the initial condition shown in Fig. 10 and averaging the force VI. CONCLUSION
over 10 updates per site after an initial equilibration of 1pdates ) ) ) )
per site. During these updates, the defects are kept fixed, zand We have examined topological defects or vortices in the

is defined according to which way they would move if we allowed three-state Potts antiferromagnet on the square lattice. Both
them to. The formA/(r +r,) fits the data within the expected error the height representation and arguments on the discrete lat-
over most of the range. tice suggest that positive and negative defects are attracted
i . _ by an entropically driven Coulomb force. We have con-
than the local mean-field approximation 8/20.477 given firmed this through numerical experiments, and obtained rea-
in Sec. Il. However, it differs by only 12% with the value of sonahje agreement between the magnitude of this force and

3/4 derived from the exact solution of the Potts model ands theoretical value, derived from the exact solution of the
our calculation of the mobility in Sec. IV. Since this extrapo- pytts model and our calculation of the defects’ mobility.
lation is based on only four different lattice sizes, it should pgoih this model[30] and the triangular Ising antiferro-

be easy to improve this agreement with further ”Umericalnagnet[cal,zl] are known to have Kosterlitz-Thouless-like

work. i . phase transition§32] in the same universality class as the

~ We suspect thah is larger on smaller lattices because gjy state clock mode[33,34 when a ferromagnetic next-
field lines have less room to spread out. We would like t0nearest-neighbor interaction is added. In another paper, we
analyze this in terms of image charges, but it is somewhagpe to ook at how this interaction, and the screening effect
unclear how to do this. In fact, even when the interdefecit particle-antiparticle pairs at nonzero temperatures, affects
distance is half the lattice size, our predictionAf(r +ro)  he forces between defects. Finally, we note that Bakaev and
for the force is only 25% off, even though by symmetry the x ahanovich[35] have discussed the motion of a different

image charges should cancel and make the force zero. Th&ng of defect in they=3 Potts antiferromagnet, a hole with
reason for this is that single spin-flip dynamics is not quitey, yndefined color.

ergodic at zero temperature when the defects are held fixed;
the boundaries between checkerboard domains in Fig. 11 can
move and join with droplet boundaries, but not cross. There-
fore, the topology of the field lines stays the same, with five C.M. is grateful to Mark Newman, Chris Henley, Chen
connecting the defects directly and only one going around&eng, Roman KoteckyMichael Lachmann, and Andrew
the lattice the other way. In a sense, this may be a happlargellis for helpful discussions; N.M. thanks the National
accident, allowing us to observe the force at larger distanceScience Foundation Research Experience for Undergraduates
than we would be able to on finite lattices if image chargedProgram.
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