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Vortex dynamics and entropic forces in antiferromagnets and antiferromagnetic Potts models
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It is well known in models with an interface representation, such as the dimer model, the triangular Ising
antiferromagnet, the six-vertex ice model, and the three-state antiferromagnetic Potts model on the square
lattice, that topological defects of opposite charge are attracted with an entropically-driven Coulomb force. We
examine the Potts model in detail, show explicitly how this force is felt through local fields, and calculate the
defects’ mobility. We then take two approaches to measuring this force numerically. First, we quench a random
initial state to zero temperature and measure the density of defectsr(t) as a function of time. While this gives
some evidence for a local force, we compare it with a free diffusion experiment, and show that the asymptotic
decay ofr(t) depends on the initial distribution of defects rather than the forces between them. Second, we set
up initial conditions with a single pair of vortices, and measure the force between them as a function of
distance. This gives reasonable agreement with theory, although finite-size effects and a lack of ergodicity play
a significant role.@S1063-651X~99!15611-3#

PACS number~s!: 05.50.1q, 75.10.Hk, 47.32.Cc, 67.40.Fd
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I. INTRODUCTION

A number of models in statistical physics admit an int
face representation, such as dimer models@1,2#, the triangu-
lar Ising antiferromagnet@3,4#, the six-vertex ice model@5#,
and the three-state Potts antiferromagnet on the square
tice. The long-wavelength behavior of the system is th
governed by a Gaussian model, with a free energy of
form

G5
1

2
KE u¹hu2 dx dy. ~1!

Here h is the height of the interface andK is a stiffness
constant. Thus, there is a free energy cost related to the
dient of the interface.

Topological defects in these models become screw di
cations in this representation, where the topological charg
equal to the Burgers vectorB, i.e., the total change in heigh
Dh integrated around the defect. Such a defect has a
around it

u¹hu5
B

2pr

so the free energy of a defect integrated from a short-dista
cutoff r 0 ~roughly the lattice spacing! to an interdefect dis-
tancer is

G5
KB2

4p
~ log r 2 log r 0! ~2!
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just as for dislocations in solids@6#. Integrating this over all
space for a pair of defects with Burger vectorsB and2B a
distancer apart and differentiating with respect tor gives a
Coulomb-like attractive force@7#

F52
]G

]r
52

KB2

pr
. ~3!

If we are in a viscous regime whereF is opposed by fric-
tional forces, we expectF to be proportional to the particles
velocity,

vW 5GF52
GKB2

pr
5

A

r
, ~4!

whereG is the mobility.
Since the energy of a pair of defects is not related to th

distance, this force is entirely entropic; that is, two defe
are attracted because there are more ways to arrange
surrounding lattice when they are close together. This is
planation enough, but how defects feel this in their loc
dynamics is somewhat mysterious. In addition, to our kno
edge this force has not been measured directly.

We start by reviewing the three-state Potts model on
square lattice and its interface representation. We defin
local field and show that the motion of defects under sin
spin-flip dynamics is in fact correlated with this field, thu
justifying Eq.~4! from a microscopic point of view. We also
calculate the mobilityG of the defects.

To confirm the existence of a Coulomb force, we do tw
kinds of numerical experiments. First, we quench a rand
initial state to zero temperature and measure the densit
defects as a function of time. We find logarithmic correctio
to r}t21 like those seen in theXY model @8#. However, a
free diffusion experiment suggests that this occurs whene
5344 © 1999 The American Physical Society
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PRE 60 5345VORTEX DYNAMICS AND ENTROPIC FORCES IN . . .
a local conservation law is used to determine the defe
initial positions, whether or not there are forces betwe
them.

Therefore, we also attempt to measure the force dire
by placing a pair of defectsr apart, allowing the lattice
around them to equilibrate, and measuring how they wo
move toward or away from each other if we allowed them
We obtain good agreement with a force of the form^Dr &
52A/(r 1r 0), although finite-size effects and a partial la
of ergodicity atT50 affect our results. Using Park and W
dom’s calculation of the stiffness of the equivalent heig
model @9# and our calculation of the mobilityG, we predict
thatA for the Potts antiferromagnet should be 3/4. This is
reasonable agreement with our results.

II. THREE-STATE POTTS ANTIFERROMAGNET

Theq-state antiferromagnetic Potts model is a general
tion of the Ising antiferromagnet,

U5(
nn

d~si ,sj !, ~5!

where each site has a statesiP$1,2, . . . ,q% and d is the
Kronecker d function. The states are often thought of
colors, so that the ground state consists of a coloring wh
no two neighbors have the same color. Whenq53, this can
be thought of as a discretization of the antiferromagneticXY
model,

U5(
nn

cos~u i2u j !, ~6!

where each site has a unit spin pointing in some directionu.
If the u i are restricted to three directions 2p/3 apart, then
Eqs.~5! and~6! are equal up to an affine transformation sin
cos(ui2uj) depends only on whetheru i andu j are the same
or different.

We will focus on this three-state model on the squ
lattice. Nightingale and Schick@10# showed that it is critical
at T50. Baxter @11,12# showed that this is its only phas
transition, and solved it there as a hard-squares model.
recent Monte Carlo studies using the Wang-Swends
Kotecký cluster algorithm@13#, see, e.g., Ferreira and Sok
@14#.

Kolafa @15# pointed out that this model supports vortice
as shown in Fig. 1. These change color but preserve t

FIG. 1. Counterclockwise and clockwise defects maintain th
handedness as they diffuse. Pairs of opposite handedness can
hilate or turn into chargeless excitations, which diffuse until o
end is surrounded by only one other color, at which point it c
disappear by changing to the third one.
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handedness as they diffuse, and two defects of oppo
handedness can annihilate when they meet. There are
chargeless excitations, where sites on either side of the e
of the frustrated bond have the same color. These can
annealed away without interacting with other defects, so t
disappear exponentially quickly in a quench.

Kolafa defines the charge within a region as a sum aro
a counterclockwise perimeter,

Q5
1

6 ( m~si 112si !, ~7!

wherem(k)50, 11 or 21, andm(k)[k(mod 3). To trans-
late this into an interface model, define a height functionh
on the lattice so thathi[si(mod 3), and furthermorehi

ir
nni-

n

FIG. 2. Local magnetization around a pair of vortices in theq
53 Potts antiferromagnet. This picture was obtained by relaxin
32332 lattice until only two defects remained, and then holdi
them fixed for 105 updates per site while we averaged the mag
tization at each site.

FIG. 3. Scatter plot of the time-averaged local magnetization
Fig. 2.
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5346 PRE 60MOORE, NORDAHL, MINAR, AND SHALIZI
2hj561 between neighboring sites~note we can add a mul
tiple of 3 to h without changing the state!. Then Eq.~7!
becomes

Q5
1

6 ( Dh,

where the sum is around a counterclockwise perimeter. T
sum is simply the Burgers vectorB, and is66 for a single
defect. The factor of 1/6 then gives a chargeQ of 61.

Equivalently, we can define a complex local magneti
tion j i5(21)pe2p isi /3, where the three colors correspond
the cube roots of unity, and (21)p gives a sign of21 and
11 on odd and even lattice sites, respectively@16#. This
makes regions with antiferromagnetic order, say with colo
on one sublattice and colors 2 and 3 on the other, relativ
uniform. ThenQ is the winding number ofj i around the
origin,

Q5
1

2p i R dj

j
.

In Figs. 2 and 3, we show the time average ofj for a con-
figuration with two defects. We can clearly see how ea
vortex produces a field around it which falls off with di
tance. In Fig. 4 we show a similar picture for the triangu
Ising antiferromagnet, with a local magnetization defined
in @17#.

We will now explore how defects could feel a Coulom
force under single spin-flip dynamics, where at each step
choose a random site in the lattice and change its color
less this would increase the energy. If we define a fieldEW
perpendicular to each bond so that the higher color in
cyclic ordering 3.2.1.3 is on its left, thenEW will tend to
point towards negative~clockwise! defects and away from
positive ~counterclockwise! ones. Note thatEW is simply ¹W h
rotated by 90°.

FIG. 5. If we define a fieldEW on each bond so that the highe
color in the cyclic ordering is on its left, the movement of a positi

defect is proportional toEW averaged over the two dashed edges

FIG. 4. Picture analogous to Fig. 2 for the triangular Ising an
ferromagnet, produced in the same way on a 33333 rhombic lat-
tice.
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As Fig. 5 shows, if we flip one site of a positive defec
the displacement of its midpoint from that site is just on
half the field on the edge extending the frustrated bo
Since both sites are equally likely, the average movemen
the defect’s midpoint is proportional toEW averaged over the
two bonds extending from the defect,

^DxW &5
1

4 ( EW .

If we define a discrete contour integral around a bound
with bondsbW , we can rewrite Kolafa’s formula as

Q5
1

6 (
bW

EW 3bW ,

so if EW is sufficiently uncorrelated around a large perimet
we have

E5
6Q

2pr
5

B

2pr
.

If we make a local mean-field approximation in which theEW
is uncorrelated between the two dashed edges, so
(1/2)(EW 5EW , then defects of chargeQ and Q8 are affected
by a 1/r force,

^DxW &5
3QQ8

2pr
.

The constant here is only approximate, since the two das
edges are not uncorrelated. Similar arguments can be m
for the triangular antiferromagnet, the six-vertex ice mod
and a related Villain model@18#.

Lenard @19# pointed out that orienting the bonds of th
dual lattice according toEW maps theq53 square Potts anti
ferromagnet onto the six-vertex ice model, giving both mo
els the ground-state entropy of3

2 log4
3 per site calculated by

Lieb @20#. When defects are present, this mapping bre
down as shown in Fig. 6. The frustrated bond has three
going or incoming arrows at each end. Thus defects act
monopoles composed of a bound pair of vertices with
unoriented bond between them. Nijset al. @21# defined a
27-vertex model that includes bonds and vertices of this t
and studied its scaling properties. We note that the P
model can also be thought of as a fully packed loop mod
in which every vertex is covered by exactly one loop@22#.

FIG. 6. Mapping theq53 Potts antiferromagnet onto the six
vertex ice model and the loop-covering model. In the former,
defect corresponds to a monopole, an undefined edge with six
rows emerging from it.
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III. ENTROPIC FORCES ON A DISCRETE LATTICE

We saw in the Introduction how the interface model, a
the Gaussian approximation to it we assume holds in
long-wavelength limit, give us an entropy-driven free ener
gradientDG proportional to logr and therefore a Coulomb
force between defects. However, it is instructive to look
rectly at the Potts model and examine how such an entr
gradient could arise on a discrete lattice. The interface mo
is not the only way to derive this; for the dimer model on t
square lattice, for instance, Fisher and Stephenson@23# used
Pfaffians and Toeplitz determinants to show that the num
of configurations with two ‘‘holes’’ a distancer apart is re-
duced byAr21/2, so DG5(1/2)logr. Ioffe and Larkin@24#
pointed out that this leads to a Coulomb force. In additi
Zeng and Leath@25# performed numerical calculations of th
cost of dislocation pairs in a randomly pinned fully pack
loop model, and found a cost proportional to logr.

One simple counting argument goes as follows. Supp
we are trying to extend a spin configuration outward from
square region of the lattice by adding an additional layerl
sites around its perimeter. For the Potts model, succes
sites have colorssi differing by 61, and the sum in Eq.~7!
is the total displacement of a walk of lengthl. The number of
such walks is

S l

l /226QD ,

whereQ is the charge inside the perimeter. The largerQ is,
the greater the constraint on the walks, and the lower
entropy will be. If we ignore the interaction between succ
sive layers, which of course we cannot, then the entropy
the set of states surrounding a chargeQ ~we take Boltz-
mann’s constant to be 1) is

SQ' ln)
l 50

r S l

l /226QD 5(
l 50

r

lnS l

l /226QD
5S02(

l 50

r F lnS l

l /2D 2 lnS l

l /226QD G
'S02~6Q!2(

l 50

r
1

l
'S02A Q2 ln r

for some constantA. We cut off our sum at some maximum
perimeter proportional to the interdefect distancer, outside
which the chargeQ is presumably canceled by defects of t
opposite type.

While the assumption of independent layers is hug
wrong ~for instance, it gives a ground state entropy per s
of s05S0 /N52) we find that the presence of a chargeQ
reduces the entropy by an amount2DS proportional to
Q2 ln r. We can think of this as a contribution to an effecti
free energy,

G52DS5A Q2 ln r

reproducing the form of Eq.~2!.
As another approach, Kotecky´ @26# pointed out that the

entropy of the Potts model can be related to the energy
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ferromagnetic Ising model at a nonzero effective tempe
ture, since the entropy of one sublattice is higher if sites
the other sublattice are the same. An odd site~say! has two
choices of color if its four neighbors have the same color,
equivalently if the fieldEW points clockwise or counterclock
wise around all four bonds, and only one choice otherw
Recall that the fieldEW determines whether the color chang
by 11 or 21 between neighbors. If we define the probab
ity of the color increasing in thex andy directions aspx and
py , respectively, we have

px5~12Ey!/2,

py5~11Ex!/2,

whereEx andEy are the components of the average field.
EW is slowly varying, and if the colors of the four neighbo
are independent, which they are not, the probability of
four having the same color is

2px~12px!py~12py!5
1

8
~12Ex

2!~12Ey!2'
1

8
~12E2!

for small fieldsE!1. The average entropy per site is

s5
ln 2

8
~12E2!5s02

ln 2

8
E2,

wheres0 is a ~badly underestimated! ground state entropy o
(1/8)ln 2 per site. The effective free energy is then increa
by

G52DS5
ln 2

8 E E2 dx dy, ~8!

giving an energy density proportional to the square of
field, just as in electromagnetism. Since this field is sim
¹h rotated by 90°, this again justifies the Gaussian mode
Eq. ~1!.

IV. VISCOUS FORCES AND MOBILITY

To show how an entropy gradient can drive a first-ord
force, suppose that we group the set of spin configurati
with two defects into a set of macrostatesS(r ), one for each
interdefect distancer. As the defects move towards and aw
from each other, we can describe the system as a bia
random walk

•••�S~r 21!�S~r !�S~r 11!�•••.

If we assume that this walk is a Markov process that has
yet had time to hit the absorbing stateS(0) where the de-
fects annihilate, and if during this transient all microsta
with two defects are equally likely, then the ratio of trans
tion probabilities between neighboring macrostates mus
the ratio of the number of microstates in them,

P~r→r 11!

P~r 11→r !
5

V~r 11!

V~r !
,
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where V(r ) is the number of microstates with defectsr
apart. The average motion is then

^Dr &5P~r→r 11!2P~r 11→r !52G
V~r 11!2V~r !

V~r 11!1V~r !

'G
1

V

]V~r !

]r
5GFW ,

where

G5~1/2!@P~r→r 11!1P~r 11→r !# ~9!

can be thought of as a mobility, and

FW 5
]S~r !

]r
52

]G

]r

is the entropic force whereS5 logV.
To calculateG for the Potts antiferromagnet, we need

take into account the fact that a diffusing defect alterna
between horizontal and vertical bonds. If we assume for s
plicity that EW is in the x direction, a vertical defect which
flips to a neighboring horizontal bond has an equal proba
ity of flipping back to its original position or moving to th
vertical bond one site away. IfP→ andP← are the probabili-
ties that it will move to the horizontal bond to its right an
left, respectively, after two time steps we haveP(r→r 11)
5P→/2 andP(r 11→r )5P←/2. SinceP→1P←51, plug-
ging these into Eq.~9! and dividing by 2 sinceG is inversely
proportional to time givesG51/8.

We can then calculate the coefficientA5GKB2/p of Eq.
~4! exactly. Park and Widom@9#, using the exact solution o
the six-vertex ice model, showed that the free energy of
interface of widthL across a height difference ofDh562 is
2p/6L, and Burton and Henley@27# point out that setting
this equal to (1/2)K(Dh/L)2L givesK5p/6.

Combining these values ofG and K with the Burgers
vectorB56 givesA53/4. We will compare this to our nu
merical measurements below.

V. RELAXATION AND DIRECT MEASUREMENTS
OF THE FORCE

One way to detect a force between defects would be
start the system in a random initial state and allow it to rel
If defects of opposite charge are attracted, they would
expected to meet and annihilate each other more quickly
they would by random diffusion. Yurkeet al. @8# discuss the
relaxation dynamics of theXY model, in which vortices of
opposite type are attracted with a Coulomb force. Assum
a viscous dynamicsvW 5GFW where the mobilityG is inversely
proportional to logr, they use simple scaling arguments
show that the defect densityr obeys

1

r2

dr

dt
5

C

log~r/rc!
, ~10!
s
-

l-

n

to
.
e

an

g

whererc is a core density andC is a constant. Note that th
left-hand side of Eq.~10! is constant for the mean-field be
havior r}t21. The leading behavior ofr as a function of
time is then

r}
log t

t
1OS log logt

t D
modifying the asymptotic behaviorr}t21 with a logarithmic
correction. They confirm the existence of this correcti
through numerical experiments.

We have performed similar experiments for the Po
model, the triangular antiferromagnet, and a Villain mod
related to the ice model@18#. In each case, we quenched th
system fromT5` ~a random initial state! to T50, and mea-
sured the number of defectsn(t) as a function of time. In
Fig. 7 we graphtn(t) against logt for the triangular antifer-
romagnet, averaged over 100 runs of 105 updates per site
each on a 409634096 lattice. While logarithmic correction
are difficult to establish numerically,n(t) seems to behave a
(log t)/t over one and a half decades int. In addition, in Fig.
8 we use the same data to graphr2(dr/dt)21 and fit it to

FIG. 7. Plot oftn(t) vs log10 t for the triangular antiferromag-
net. The straight line suggests thatn(t)}(log t)/t for large t, and
extends about a decade and a half. The data were taken by av
ing 100 trials of 105 updates per site on a 409634096 lattice, at
which time ;75 defects remained. They axis is in units of 106

particles times time.

FIG. 8. Plot ofr2(dr/dt)21 vs log10 r for the triangular anti-
ferromagnet, using the same data as in Fig. 7. The derivative at
time t was defined by a linear fit to 101 data points centered aro
t. The fit is to the form in Eq.~10!. If the mean-field behaviorr
}t21 held, the graph would be a horizontal line. They axis is in
units of 106 particles times time.
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C21 log(r/rc), as per Eq.~10!. We obtain a good fit over a
decade and half inr, with a core densityrc50.02. Results
from the other two models are similar.

However, this turns out not to be a good test for a Co
lomb force. We have performed a continuous-time free d
fusion experiment, in which we use a random state of
triangular antiferromagnet to set up the initial distribution
defects. We then diffuse the defects with random wa
moving them up, down, left, and right with equal probabilit
and annihilate pairs of opposite charge when they m
Thus, the defects have the same initial distribution and c
relations as in the antiferromagnet, but no forces betw
them.

Since these systems obey a Gauss-like law as in Eq.~7!,
the total charge in a region of sizel is a sum ofO( l ) surface
terms, rather an extensive sum ofO( l 2) random variables.
Thus the total charge fluctuates asO( l 1/2) rather thanO( l ),
and defects of opposite charge are well mixed with e
other in the initial condition, giving a decay close to th
mean-field behaviorr(t)}t21. With uncorrelated initial con-
ditions, defects of like type clump into domains, giving
t21/2 decay@28,29#.

In Fig. 9 we graphtn(t) for a 409634096 lattice over a
continuous time of 83105 updates per site. The data appea
to have the same asymptotic behavior of (logt)/t, and fits of
r2(dr/dt)21 to logr are at least as convincing as for th
models we studied. In other words, the asymptotic beha
of r is more a consequence of the correlations in the defe
initial positions than of the forces between them. This
presumably because a 1/r force causes the length scale of t
system to grow asymptotically ast1/2, no faster than diffu-
sion would anyway. At short times, however,r decreases
faster in these models than in the free diffusion experime
indicating that attractive forces play a role early on wh
defects are relatively close together.

Even if the behavior ofr at long times does not confirm
the existence of a Coulomb force, we can argue that it d
show that the force between defects does not fall off m
slowly than 1/r . Generalizing the argument of@8#, if the
force between two defects goes asr 2a for somea,1 and
the mobility is roughly constant, the typical velocity is

FIG. 9. Plot oftn(t) vs log10 t in a continuous-time free diffu-
sion experiment, where the triangular antiferromagnet was use
set up the initial distribution of defects. The straight line sugge
that n(t)}(log t)/t, and extends three decades. The data were ta
by averaging 100 trials of 83105 updates per site each on a 409
34096 lattice until;100 defects remained. They axis is in units of
107 particles times time.
-
-
e
f
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t.
r-
n

h

s

r
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s

t,

es
e

dj

dt
}j2a,

wherej is the length scale of the system. Thenj}t1/(11a),
and the defect density is

r}j22}t22/(11a).

If a,1, thenr would decay faster thant21. Since we do not
observe this, we claim that the ‘‘field lines’’ of this forc
spread out, and are not concentrated between defects~In
another paper, in progress, we argue that field lines do bu
into tubes when a ferromagnetic next-nearest-neighbor in
action is added.!

In the case of theq53 square Potts antiferromagnet, w
have also measured the force between defects directly. I
effort to sample the set of configurations with two defect
particular distance away from each other, we set up an in
condition with two vertical defects of opposite type as in F
10, and then let the lattice evolve while keeping these defe
fixed. We did this on lattice sizes of 32, 64, 128, and 25
averaging over 107 updates per site in each case after
initial equilibration of 103 updates per site. Letting the inte
defect distance range up to 1/3 the lattice size, we perfor
least-squares fit to the form

^Dr &52
A

r 1r 0
,

wherer 0 is a core radius. This fit seems to work fairly we
Our values forA and r 0 for various lattice sizesL are

L A r0

32 1.142 2.573
64 0.978 1.956
128 0.906 1.652
256 0.869 1.494

These show considerable finite-size effects. Since the m
is critical atT50, we assume thatA converges to its exac
value as a power law in the lattice size. A least-squares fi
the form A(L)5A1CL2a gives an exponent ofa51.137
and an extrapolated value ofA50.843. This is much large

to
s
en FIG. 10. Initial condition with two vertical defects an even di
tance away from each other. The six checkerboard phases c
around the defects, meeting at angles ofp/3.
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5350 PRE 60MOORE, NORDAHL, MINAR, AND SHALIZI
than the local mean-field approximation 3/2p'0.477 given
in Sec. II. However, it differs by only 12% with the value o
3/4 derived from the exact solution of the Potts model a
our calculation of the mobility in Sec. IV. Since this extrap
lation is based on only four different lattice sizes, it shou
be easy to improve this agreement with further numer
work.

We suspect thatA is larger on smaller lattices becau
field lines have less room to spread out. We would like
analyze this in terms of image charges, but it is somew
unclear how to do this. In fact, even when the interdef
distance is half the lattice size, our prediction ofA/(r 1r 0)
for the force is only 25% off, even though by symmetry t
image charges should cancel and make the force zero.
reason for this is that single spin-flip dynamics is not qu
ergodic at zero temperature when the defects are held fi
the boundaries between checkerboard domains in Fig. 11
move and join with droplet boundaries, but not cross. The
fore, the topology of the field lines stays the same, with fi
connecting the defects directly and only one going arou
the lattice the other way. In a sense, this may be a ha
accident, allowing us to observe the force at larger distan
than we would be able to on finite lattices if image charg

FIG. 11. Force between two defects as a function of their d
tancer, This data were obtained on a lattice of size 256 by start
with the initial condition shown in Fig. 10 and averaging the for
over 107 updates per site after an initial equilibration of 103 updates
per site. During these updates, the defects are kept fixed, and^Dr &
is defined according to which way they would move if we allow
them to. The formA/(r 1r 0) fits the data within the expected erro
over most of the range.
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were fully felt. It also means that the measured value oA
may depend on the topology of the initial condition; how
ever, experiments on lattices of size 64 and 128 where all
field lines connect the two defects directly give values oA
and r 0 differing from those above by less than 0.4%,
topology may in fact not matter that much.

We also tried to use the Wang-Swendsen-Kotecky´ cluster
algorithm@13# to sample the set of configurations with a pa
of defects at particular places. Unfortunately, while clust
flipping moves leave defects in the same place, they so
times replace two defects of opposite charge with t
chargeless ones. Finding an algorithm more efficient th
single spin-flip dynamics to sample the set of two-def
configurations would seem to be an open question.

VI. CONCLUSION

We have examined topological defects or vortices in
three-state Potts antiferromagnet on the square lattice. B
the height representation and arguments on the discrete
tice suggest that positive and negative defects are attra
by an entropically driven Coulomb force. We have co
firmed this through numerical experiments, and obtained r
sonable agreement between the magnitude of this force
its theoretical value, derived from the exact solution of t
Potts model and our calculation of the defects’ mobility.

Both this model@30# and the triangular Ising antiferro
magnet@31,4# are known to have Kosterlitz-Thouless-lik
phase transitions@32# in the same universality class as th
six-state clock model@33,34# when a ferromagnetic next
nearest-neighbor interaction is added. In another paper
hope to look at how this interaction, and the screening eff
of particle-antiparticle pairs at nonzero temperatures, affe
the forces between defects. Finally, we note that Bakaev
Kabanovich@35# have discussed the motion of a differe
kind of defect in theq53 Potts antiferromagnet, a hole wit
an undefined color.
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